COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
ARTIFICIAL INTELLIGENCE	CSE562	1	3	3	10		

Prerequisites

Language of Instruction	English
Course Level	Graduate
Course Type	Elective
Course Coordinator	
Instructors	Prof.Dr. Emin Erkan Korkmaz
Assistants	
Goals	The aim of this course is to provide students the knowledege about the basic techniques and methodologies of artificial intelligence and abilities to apply artificial intelligence methods on practical problems.
Content	Basic concepts and techniques of AI. Problem solving in AI, informed and uninformed search techniques, Local search techniques and simulated annealing Meta-heuristic search methods. Introducion to Neural Networks. Game playing, Prolog overview, knowledge representation and reasoning.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
 Knolwedege about the basic methodologies in artificial intelligence. 	1	1,2	A,C,D
 Ability to use knowledge to formulate, and solve practical problems using artificial intelligence techniques. 	2	1,2	A,C,D

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

COURSE CONTENT				
Week	Topics	Study Materials		
1	Introductory terms, foundations, history and philosophy of AI	Textbook		
2	Intelligent Agents	Textbook		
3	Problem Solving and Introduction to Search Methods	Textbook		
4	Uninformed Search Methodologies	Textbook		
5	Heuristic Search	Textbook		
6	Game Playing	Textbook		
7	Meta-Heuristics	Textbook		
8	Neural Networks	Textbook		
9	Knowledge Based Agents	Textbook		
10	First Order Logic	Textbook		
11	Inference in First Order Logic	Textbook		
12	Prolog and Logic Programming	Textbook		
13	Prolog and Logic Programming	Textbook		
14	Probabilistic Reasoning	Textbook		

RECOMMENDED SOURCES				
Textbook	Artificial Intelligence: A Modern Approach. Stuart Russell, Peter Norvig, Prentice Hall, Second Edition			
Additional Resources				

	MATERIAL SHARING
Documents	
Assignments	
Exams	

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	1	40		
Assignment	3	30		
Project	1	30		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		30		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		70		
Total		100		

COURSE CATEGORY

Expertise/Field Courses

COURSE'S CONTRIBUTION TO PROGRAM						
No Program Loarning Outcomes		Contribution				
			2	3	4	5
1	Ability to reach wide and deep knowledge through scientific research in the field of Computer Science and Engineering, evaluate, interpret and apply.				х	
2	Ability to use scientific methods to cover and apply limited or missing knowledge, and to integrate the knowledge of different disciplines.			х		
3	Ability to construct Computer Science and Engineering problems, develop methods to solve the problems and use innovative methods in the solution.				х	
4	Ability to develop new and/or original ideas and algorithm; develop innovative solutions in the design of system, component or process.				х	
5	Ability to have extensive knowledge about current techniques and methods applied in Computer Engineering and their constraints.			х		
6	Ability to design and implement analytical modeling and experimental research, solve and interpret complex situations encountered in the process.				х	
7	Ability to use a foreign language (English) at least at the level of European Language Portfolio B2 in verbal and written communication.				х	
8	Ability to lead in multidisciplinary teams, develop solutions to complex situations and take responsibility.	х				
9	Ability to pass process and the results in Computer Science and Engineering field, in national and international area in or outside of the field, systematically and clearly in written or oral form.	х				
10	Awareness of the social, legal, ethical and moral values, and the ability to conduct research and implementation work within the framework of these values.	х				
11	Awareness of the new and emerging applications in Computer Science and Engineering field, and the ability to examine them and learn if necessary.				х	
12	Ability to describe the social and environmental dimensions of Computer Science and Engineering applications.		Х			

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Excluding the exam week: 13x Total course hours)	13	3	39			
Hours for off-the-classroom study (Pre-study, practice)	14	4	56			
Midterm examination	1	2	2			
Homework	3	20	60			
Project	1	80	80			
Final examination	1	3	3			
Total Work Load			240			
Total Work Load / 25 (h)			9.60			
ECTS Credit of the Course			10			